HW10 - Electrochemical Stoichiometry

Homework 10

Electrochemical Stoichiometry

Question 1		1.5 pts
What is the standard cell pote	ential of a battery made from the half reactions below?	
$2H^+ + 2e^- \longrightarrow H_2$	E° = 0.00V	
$O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$	E° = +1.23 V	
-2.46		
O 1.23		
2.46		
O -1.23		

Question 2	1.5 pts
In an electrolytic cell, the negative terminal is the (cathode/anode) and is the site of the (oxidation/reduction) has reaction.	ılf-
Cathode, reduction	
Cathode, oxidation	
anode, oxidation	
anode, reduction	

Question 3	1.5 pt
Consider the galvanic cell:	
$Ag(s) AgCl(s) Cl^{-}(aq) Cl^{-}(aq) Hg_{2}Cl_{2}(s) Hg(l)$	
What is the smallest possible integer coefficient of Ag(s) in the combined balanced equation?	
O 1	
O 2	
O 3	
O 4	
Question 4	1.5 pt
Silver is plated on copper by immersing a piece of copper into a solution containing silver (I) ion eaction, copper	s. In the plating
is oxidized and is the reducing agent.	
is oxidized and is the oxidizing agent.	
is reduced and is the oxidizing agent.	
is reduced and is the reducing agent.	
Question 5	1.5 pt
	1.5 pt
Question 5 What is the E° for the following electrochemical cell where Zn is the cathode? Fe Fe ²⁺ (1.0 M) Zn ²⁺ (1.0 M) Zn	1.5 pt
What is the E° for the following electrochemical cell where Zn is the cathode? Fe Fe $^{2+}$ (1.0 M) Zn $^{2+}$ (1.0 M) Zn	1.5 pt
What is the E° for the following electrochemical cell where Zn is the cathode?	1.5 pt
What is the E° for the following electrochemical cell where Zn is the cathode? Fe Fe ²⁺ (1.0 M) Zn ²⁺ (1.0 M) Zn E°(Zn) = -0.76, E°(Fe) = -0.44	1.5 pt

-0.32			
O -1.20			
Question 6			1.5 pts

Question /		1.5 pts
Consider the voltaic cell:		
	0.0010 M) Ag⁺ (0.010 M) Ag	
$Sn^{4+} + 2e^- \longrightarrow Sn^{2+}$	E° = +0.15 V	
$Ag^+ + 1e^- \longrightarrow Ag(s)$	E° = +0.80 V	
The electrons flow in the	external circuit from	
O Pt to Ag		
O Ag to Pt		
○ Sn ²⁺ to Ag ⁺		
O Sn to Ag		

Question 8	1.5 pts
Using the standard potential tables, what is the largest approximate E° value that can be achieved reactions are combined to form a battery?	ed when two half-cell
O 6 V	
○ -6 V	
○ -3 V	
○ 3 V	
Question 9	1.5 pts
Consider the cell:	
Zn(s) Zn ²⁺ (aq) Cl ⁻ (aq) AgCl(s) Ag(s)	
Calculate E°.	
○ -1.20 V	
O +0.54 V	
O +0.98 V	
O +1.20 V	
Question 10	2 pts
Which species will oxidize Cr^{2+} (E°_{red} = -0.407) but not Mn^{2+} (E°_{red} = +1.224)?	
O Pb ⁴⁺ (E° _{red} = +1.68)	
V^{3+} (E° _{red} = -0.255)	
O ₃ in acid (E° _{red} = +2.076)	
\bigcirc Fe ²⁺ (E° _{red} = -0.771)	

\bigcirc Zn ²⁺ (E° _{red} = -0.762)		

Question 11	1.5 pts
If the standard potentials for the couples Cu ²⁺ Cu, Ag ⁺ Ag, and Fe ²⁺ Fe are +0.34, +0.80, and -0.44 V respecti which is the strongest reducing agent?	vely,
○ Fe	
○ Cu ²⁺	
○ Ag	
O Ag⁺	
○ Cu	
○ Fe ²⁺	

Question 12	1.5 pts
For the cell diagram below:	
$Cd(s) \mid CdSO_4(aq) \mid \mid Hg_2SO_4 \mid Hg(I)$	
What reaction occurs at the cathode?	
$\bigcirc CdSO_4(s) + 2e^- \longrightarrow 2Cd(I) + SO_4^{2-}(aq)$	
$\bigcirc \ 2\text{Cd(I)} + \text{SO}_4^{2\text{-}}(\text{aq}) \longrightarrow \text{CdSO}_4(\text{s}) + 2\text{e}^{-}$	
$\bigcirc 2 \text{Hg(I)} + \text{SO}_4^{2-}(\text{aq}) \longrightarrow \text{Hg}_2 \text{SO}_4(\text{s}) + 2 \text{e}^{-}$	
$\bigcirc \ \ Hg_2SO_4(s) + 2e^- \longrightarrow 2Hg(I) + SO_4^{2-}(aq)$	

Question 13	2 pts
Consider the cell diagram below:	

$Mg(s) Mg^{2+}(aq) Au^{+}(aq) Au(s)$
$Mg^{2+} + 2e^{-} \longrightarrow Mg$ $E^{\circ} = -2.36$
$Au^+ + e^- \longrightarrow Au$ $E^\circ = +1.69$
What is the cathode and what is the cell type?
O Au(s); an electrolytic cell
Mg(s); an electrolytic cell
◯ Mg(s); a voltaic cell
O Au(s); a voltaic cell

Consider the half-reactions: $Mn^{2+} + 2e^{r} \longrightarrow Mn \quad E^{\circ} = -1.029 \text{ V}$ $Ga^{3+} + 3e^{r} \longrightarrow Ga \quad E^{\circ} = -0.560 \text{ V}$ $Fe^{2+} + 2e^{r} \longrightarrow Fe \quad E^{\circ} = -0.409 \text{ V}$ $Sn^{2+} + 2e^{r} \longrightarrow Sn \quad E^{\circ} = -0.136 \text{ V}$ Using the redox couples to establish a voltaic cell, which reaction would be non-spontaneous? $Sn^{2+} + Fe \longrightarrow Sn + Fe^{2+}$ $Fe^{2+} + Mn \longrightarrow Mn^{2+} + Fe$ $2Ga^{3+} + 3Fe \longrightarrow 2Ga + 3Fe^{2+}$ $2Ga + 3Sn^{2+} \longrightarrow 2Ga^{3+} + 3Sn$ $Sn^{2+} + Mn \longrightarrow Sn + Mn^{2+}$

Question 15

Find the standard emf of the given cell diagram:

Cu(s) | Cu²⁺(aq) || Au⁺(aq) | Au(s)

$Cu^{2+} + 2e^{-} \longrightarrow Cu$ $E^{\circ} = +0.34 \text{ V}$	
$Au^+ + e^- \longrightarrow Au$ $E^\circ = +1.69 \text{ V}$	
O +1.35 V	
○ -2.03 V	
O +2.03 V	
○ -1.35 V	
Question 16	2 pts
Which species will REDUCE Ag ⁺ but not Fe ²⁺ ?	
○ Cr	
Ок	
○ Co ²⁺	
\bigcirc H $_2$	
Question 17	1.5 pts
If the table of standard reduction potentials is ordered with the strongest reducing agents at the top, how are reduction potentials ordered (from top to bottom)?	the
from most spontaneous to least spontaneous	
of from most common to least common	
from most positive to most negative	
from most negative to most positive	

Question 18 1.5 pts

○ F-	
O Li⁺	
O Li	
O F ₂	
Question 19	1.5 pts
	vould be consumed at the anode?
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$ $E^{\circ} = +1.50$	vould be consumed at the anode?
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$ $E^{\circ} = +1.50$	vould be consumed at the anode?
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$ $E^{\circ} = +1.50$ $2(s) + 2e^{-} \longrightarrow 2I^{-}(aq)$ $E^{\circ} = +0.53$	vould be consumed at the anode?
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$ $E^{\circ} = +1.50$ $2(s) + 2e^{-} \longrightarrow 2l^{-}(aq)$ $E^{\circ} = +0.53$	vould be consumed at the anode?
O Au ³⁺ (aq) O I ₂ (s)	vould be consumed at the anode?

Not saved

Submit Quiz